CONVERSÃO VARREDURA-VETOR PARA DADOS POLIGONAIS

NOME E ENDEREÇO DO AUTOR

*GUARACI JOSE ERTHAL

Av. dos Astronautas 1758 Jardim da Granja São José dos Campos. Caixa Postal CEP 12201. Fone (0123)229977/443.

SUMARIO

Dentro das äreas de processamento digital de imagens e reconhecimento de padrões existem procedimentos que permitem identificar e extrair objetos de interesse contidos nas imagens. Imagens digitais são armazenadas internamente no computador num formato chamado formato de varredura (ou matricial, ou "raster") e podem ser facilmente visualizadas em dispositivos que utilizem o mesmo formato - como monitores gräficos, impressoras e gravadores de filme.

Jä na ảrea de computação gräfica, tradicionalmente, os dados se encontram armazenados no chamado formato vetorial e o dispositivo padrão para visualização deste tipo de dados, è uma mesa plotadora.

Sistemas de informações geogräficas tèm como objetivo a integração de informações distribuídas espacialmente. A combinação de dados de imagens de satėlite (formato varredura), com dados de cartas (tradicionalmente armazenados no formato vetorial) exigirä, inevitavelmente, procedimentos para converter de um formato para o outro e vice-versa. Os procedimentos exigidos dependem do formato utilizado para a manipulação dos dados e dos dispositivos de entrada e saída disponiveis.

Este trabalho tem como objetivo fazer um levantamento das diferentes propostas para conversão de dados do formato varredura, para o formato vetorial e se insere dentro do projeto da versão 2.1 do Sistema de Informações Geogräficas, em desenvolvimento no INPE.

INTRODUÇĀO

Historicamente, (Boyle et allii, 1983) os Sistemas de Informações Geogräficas adotaram como padrão para armazenamento de dados espaciais, a chamada estrutura vetorial. Segundo esta abordagem, as entidades espaciais bäsicas (ponto, arco e polígono) são representadas por suas coordenadas dentro de um dado referencial, como por exemplo, um sistema de projeções cartográficas. Desta forma, um ponto seria representado por um par de coordenadas $(\mathrm{Pi}=(\mathrm{Xi}, \mathrm{Yi}))$, um arco por uma sequēncia de pontos ($\mathrm{Li}=$ $\{(X 1, Y 1),(X 2, Y 2), \ldots,(X n, Y n)\})$ e um polígono por uma sequēncia de arcos (POi $=\{\mathrm{L} 1, \mathrm{~L} 2, \ldots, \mathrm{Lm}\})$. Uma entidade tipo àrea é, então, representada pelas suas fronteiras. Este tipo de estrutura para representação de dados se adequava bem aos tipos de dados existentes (mapas), bem como aos perifëricos disponiveis (mesas plotadoras e monitores gräficos vetoriais).

0 advento de novas tecnologias em termos de "hardware" para aquisição e processamento e salda de dados espaciais (digitalizadores de varredura, gravadores de filme impressoras gráficas, monitores gráficos de varredura e sensores remotos com sistemas de varredura), motivou o desenvolvimento de sistemas de informações geogräficas voltados para o tratamento de um novo tipo de informação: dados espaciais representados no formato varredura (Boyle et allii,1983). A partir deste ponto tornou-se inevitảvel a necessidade da integração de informações disponfiveis em formatos distintos, ou seja, converter dados do formato vetorial para o de varredura e vice-versa. A conversão vetor-varredura já é bem conhecido na literatura e oferece poucos problemas para a sua solução (Rogers, 1985; Distante \& Veneziani, 1982). Jä no caso da conversão varredura-vetor, ainda não se apresenta uma solução definitiva. Os métodos existentes são relativamente complexos e dependem substancialmente da aplicação (Peuquet,1982; Greenlee, 1987; Faust, 1987; Maffini, 1987).

ABORDAGENS PARA CONVERSÃO VARREDURA-VETOR

0 processo de conversão de dados do formato varredura para o vetorial nāo se limita meramente à extração de atributos lineares a partir de uma imagem "raster". Esta, è na realidade, uma das componentes de um processo mais complexo que pode ser dividido em quatro grupos:

> - pré-processamento,
> ntributos lineares, ato,
> \&unstruças topologica.

Cada um destes grupos pode ser decomposto numa sequência adequada de processamentos dependendo do tipo de informação a ser convertida. Dois tipos bäsicos de entidades geomëtricas são extraídos no processo de conversão varredura-vetor: arcos eanreas.

No grupo de pré-processamento, são realizadas todas as operações destinadas a identificar e representar os objetos de interesse no formato varredura. Tais operações incluem : (a) realçamento, (b) segmentação, (c) afinamento e preenchimento e (d) rotulação. No item realçamento aplicam-se técnicas que permitem enfatizar os objetos de interesse, separando-os dos demais objetos existentes na imagem. Consiste principalmente de algoritmos para deteç̧ão de bordas (Greenlee,1987; Pavlidis,1982; Graça, 1987). Na segmentação, os objetos de interesse são extraídos, eliminando-se o restante da informação. Diversas técnicas estão disponíveis e a sua aplicação depende do conteūdo da imagem. Como exemplos, pode-se citar: limiarização, classificação espectral e discriminação por textura (Rosenfeld,1978; Greenlee, 1987). No item afinamento e preenchimento, aplicam-se algoritmos para: (a) eliminar ruídos, (b) definir a estrutura dos objetos e (c) conectar objetos (Peuquet,1981; Landy,1985; Logan,1981; Harris et allii,1982). Finalmente, na rotulação, os objetos são individualizados. Nesta fase, é possível ainda obter alguns parāmetros que descrevem a geometria dos objetos, como: ärea, perímetro, comprimento, largura e momentos de várias ordens (Rosenfe1d, 1978; Nichols, 1981).

No grupo de extração de atributos lineares, incluem-se as abordagens para transformar os objetos identificados, do formato varredura para o vetorial. Aqui, os métodos podem ser divididos em dois conjuntos: (a)extração por arcose (b) extração ao longo da varredura (Peuquet, 1981). No primeiro caso, são identificados todos os nös e extremos de arcos existentes e, partindo-se deles, cada arco é perseguido e extraído "pixel" a "pixel". Desta forma, o arquivo de imagem é varrido várias vezes (um arco pode interceptar todas as linhas de uma imagem). A sua implementação é mais simples, mas exige que a imagem seja carregada na memória principal do computador, ou num "frame buffer" para agilizar a busca dos arcos. Usos desta abordagem podem ser encontrados em: Greenlee (1987), Graça (1987) e Hsu (1982) e Nichols (1981). No caso, da extração ao longo da direção de varredura, cada linha da imagem é analisada apenas uma vez, sendo identificados os arcos que a interceptam. Uma lista de arcos é mantida em memória, e atualizada a cada nova linha de imagem que é analisada. Quando a ültima linha de imagem é lida e analisada, toda estrutura vetorial terä sido extraída. A diferença fundamental desta abordagem para a anterior, é que värios arcos são extraídos simultaneamente. Outra característica intrínsica ao método, consiste no fato de exigir uma estrutura de dados eficiente para gerenciar a operação de extração simultānea de arcos e para reconhecer a conectividade entre arcos. Um uso desta abordagem pode ser encontrado em Rosenfeld (1978). Devido â natureza da estrutura de varredura o volume de dados gerado durante a conversão para o formato vetorial tende a ser grande se armazenarmos cada "pixel" do arco por suas coordenadas (x, y). Para reduzir este volume, usualmente utiliza-se o esquema de representação conhecido por cỏdigo de cadeia, "chain code" (Freeman, 1974) como forma intermediäria de armazenamento, e que é bem mais econōmica.

Durante a fase de pós-processamento, são realizadas, operações que permitem melhorar a representação final dos dados vetoriais. Para tanto os seguintes processamentos são realizados: (a) eliminação de arcos espúreos (b) redução de dados e (c) conexão entre arcos. No primeiro caso, conhendo-se a priori as características dos objetos de interesse de posse de parāmetros obtidos a partir dos objetos extraídos (comprimento, curvatura, ärea), é possível eliminar objetos indesejáveis (Rosenfeld,1978; Graça,1987). No segundo caso, são realizadas simplificações na estrutura de representação dos dados, eliminando pontos desnecessärios (pontos alinhados) e o efeito de
escada oriundo da representação por varredura (Harris et allii,1982;Douglas \& Peucker, 1973).

Finalmente,efetua-se a reconstrução topolögica. Nesta fase são construídas as estruturas que definem as ligações entre arcos formando redes ou polígonos e também as relações de vizinhança entre polígonos. As informações necessärias para a reconstrução topológica são obtidas nas trēs fases anteriores.

PROPOSTA DE UM METODO PARA CONVERSÃO VARREDURA-VETOR

A implementação de uma metodologia para conversão varredura-vetor se insere dentro do projeto do Sistema Geogrāfico de Informações do INPE e advēm da necessidade da geração de produtos gráficos em uma mesa plotadora convencional, a partir de dados temáticos armazenados no formato varredura. 0 método aqui proposto tem sua aplicação restrita a dados temáticos contendo apenas objetos poligonais (äreas). A abordagem utilizada segue a linha da extração por arcos, trabalhando com uma imagem binária de bordas. A implementação serä feita utilizando o "hardware" SITIM - Sistema de Tratamento de Imagens, desenvolvido pelo INPE, sendo que a operação de extração de arcos utilizarä a memöria da unidade visualizadora de imagens (UVI-150) para agilizar o processamento. Abaixo segue uma descrição do algoritmo utilizado para a conversão varredura-vetor.

Algoritmo: conversão varredura-vetor para dados poligonais
Hipóteses:a)a imagem jả sofreu previamente as operações de pré-processamento, ou seja, parte-se de uma imagem temática.
b)a imagem temática è composta apenas de objetos do tipo ärea.

Passo 1: anālise das dimensões da imagem ($\mathrm{N} 1, \mathrm{Nc}$).
se as dimensões da imagem forem superiores às da UVI, o processamento de verá ser feito por retalhos ("patches").

Passo 2: conversão propriamente dita (realizado para cada retalho)

2.1 - carregar retalho na UVI (usa "buffer" rotativo de 2 linhas).

- são realizados processamentos para:
- identificação dos nós (nó = [i,j,T1,T2,T3,T4])

j

situações possíveis paras os nós:

- binarização da imagem

onde $1=$ borda e $0=$ não-borda

Situações anảlogas para os outros tipos de nós.
2.2 - perseguição dos arcos:

- para cada nó perseguem-se todos os arcos que saem dele.
- cada arco é perseguido até que se encontre um novo nó, ou a borda da imagem (os arcos são codificados por cadeia ("chain code")). Para cada arco armazenam-se ainda os temas a que ele pertence, e se estão conectados com a borda da imagem. Durante a perseguição de um arco, são apagados os "pixels" que o definem.
- uma nova varrida pela imagem, permite extrair as ilhas.
so 3: ligação dos arcos que ultrapassam a fronteira dos retalhos
- para cada retalho e para cada arco no retalho que tem algum extremo numa das bordas, localizar no retalho vizinho adequado o arco conectado a ele, fazendo a ligação.

Passo 4: redução de dados/vetorização

- nesta fase são realizadas as seguintes operações: (a) eliminação de redundâncias ("pixels" alinhados e efeito de escada) e
(b) conversão dos dados do formato cadeia para o formato vetorial propriamente dito

Passo 5: construção da topologia vetorial

- a partir dos arcos, cria-se a estrutura de polígonos rotulados, onde cada polígono é composto de:

```
identificador único
tema associado
conjunto de arcos que o compõem
polígonos vizinhos
```


CONCLUSÃO

Este trabalho teve como objetivo realizar um levantamento das värias abordagens utilizadas na solução do problema de conversão varreduravetor. Um algoritmo foi proposto para ser implementado no ambiente SITIM do INPE. Novos estudos deverão ser realizados, no sentido da generalização da sua utilização para outros tipos de dados.

REFERENCIAS BIBLIOGRAFICAS

BOYLE,A.R.; BRYANT,N; CALKINS,H.W.; JOHNSON,T; ZOBRIST,A. Manual of Remote Sensing. 2.ed., Falls Church, ASP, 1983.

DISTANCE,A.; VENEZIANI,N. A two-pass filling algorithm for raster graphics. Computer Vision, Graphics, and Image Processing, 20:288-295, 1982.

DOUGLAS,D.H.;PEUCKER,T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer, $10(2): 112-122,1973$.

FAUST,N.L. Automated data capture for geographic information systems: a commentary. Photogrammetric Engineering and Remote Sensing, 53(10):1389-1390, Oct. 1987.

FREEMAN,H. Computer processing of line-drawing images. Computing Surveys, 6(1):57-97, Mar. 1974.

GRAÇA, L.M.A. A concept for automatic change detection in revision of topographic maps by means of digital image processing and pattern recognition technics. M.Sc. thesis in photogrammetry. Enschede, May 1987.

GREENLEE,D.D. Raster and vector processing for scanned linework. Photogrametric Engineering and Remote Sensing, 53(10):1383-1387, Oct. 1987.

HARRIS,J.F.; KITTLER,J.; LLEWELLYN,G.; PRESTON,G. A modular system for interpreting bynary representation of line-structured data \S maps. Cartographica. 19(2):145-175, 1982.

HSU,S.; HUANG,X. Raster-vector conversion methods for automated cartography with applications in polygon maps and feature analysis, In: AUTO-CARTO, 5., Proceedings, Jack Foreman Ed., 1982, p.407-418.

ANDY,M.S.;COHEN,Y. Vectorgraph coding: efficient coding of line drawings. Computer Vision,Graphics, and Image Processing, 30:331-344, 1985.

LOGAN,T.L.; WOODCOCK,C.E. User alternatives in post-processing for raster-tovector conversion. In: ISPRS Commission IV Symposium, 5., Proceedings, Jack Foreman Ed., 1981, p.397-407.
> ... Raster versus vector data encoding and handing: a commentary.纤ic Engineering and Remote Sensing, 53(10):1397-1398, Oct. 1987.

NLCHOLS, D.A. Conversion of raster coded images to polygonal data structures. In: Annual Willian T. Pecora Memorial Symposium, 7., 1981, p. 508-515.

PAVLIDIS,T. Algorithms for Graphics and Image Processing. 1.ed. Rockville, Computer Science Press, 1982.

PEUQUET,D. An examination of techniques for reformating digital cartographic data/part 1: the raster-to-vector process. Cartographica, 18(1):35-48,1981.

PEUQUET,D. An examination of techniques for reformating digital cartographic data/part 2: the vector-to-raster process. Cartographica, 18(3):21-32,1981.
"JERS,D.F. Procedural Elements for Computer Graphics. 1.ed. New York, McGraw Hill, 1985.

ROSENFELD,A. Extraction of topological information from digital images, INTERNATIONAL ADVANCED STUDY SYMPOSIUM ON TOPOLOGICAL DATA STRUCTURES FOR GEOGRAPHICAL INFORMATION SYSTEMS, 1., Geoffrey Dutton Ed., 1978, v.6,p.1-14.

